Final Exam , MTH 205, Fall 2014

Ayman Badawi

QUESTION 1. (10 points) Find the general solution to $\frac{d y}{d x}=\frac{1}{0.5 x-\left(y+0.5 y^{2}\right) x^{3}}$

QUESTION 2. (12 points, each $=4$ points)
(i) find $\ell^{-1}\left\{\frac{5^{-s}}{(s-1)^{2}}\right\}$
(ii) Find $\ell^{-1}\left\{\frac{s+1}{(s-2)^{2}+9}\right\}$
(iii) Find $\ell\left\{\int_{0}^{x} e^{2 x-5 r} \sin (r) d r\right\}$

QUESTION 3. (8 points) Solve for $y(x): y^{(2)}+\frac{y^{\prime}}{x+1}-\frac{y}{(x+1)^{2}}=\frac{10}{(x+1)^{2}}$. Given $y(x)=x+1$ is a solution to the associated homogenous equation. [Hint: For this particular equation, I should not give you one solution to the homogenous part!!!, but anyway I did]

QUESTION 4. (7 points) Solve for $y(x): x y^{(2)}+2 y^{\prime}+\frac{12.5 y}{x}=0$ (assume $x>0$). .

QUESTION 5. (10 points) Given that $f(x)$ is PERIODIC and defined on the interval $[0, \infty]$. The first period of $f(x)$ is determined by

$$
\begin{cases}1 & \text { if } 0 \leq x<2 \\ 0 & \text { if } 2 \leq x<4\end{cases}
$$

Solve for $y(x)$ if

$$
\int_{0}^{x} f(r) d r+\int_{0}^{x} f(x-r) y^{\prime}(r) d r=\cos (x), y(0)=1
$$

[Hint: note that $1-e^{-4 s}=\left(1-e^{-2 s}\right)\left(1+e^{-2 s}\right)$ and $\frac{a}{b}-\frac{c}{b}=\frac{a-c}{b}$]

QUESTION 6. (12 points) Given $y^{\prime}=-y^{3}+16 y$.
a) Find the critical points of the D.E, and label each as STABLE, SEMI-STABLE, NON-STABLE.
b)If the graph of a solution to the D.E is passing through the point $(0,4)$, then sketch a rough graph of this solution.
c) Suppose if we have decided to assume that $y(0)=\frac{4}{3}$. Then solve for $y(x)$, i.e., solve the given D.E. [Hint: I do not recommend separation method here!!, maybe messy calculations if you do]

QUESTION 7. (7 points) Solve for $y(x): y^{(2)}+6 y^{\prime}+9 y=4 e^{-3 x} \quad$ [Hint: be wise when calculating $\left.y_{p}\right]$.

QUESTION 8. (8 points) Imagine that there is an object weighing 4 pounds stretches a spring $\frac{64}{25}$ feets. Assume that an air-resistance is numerically equals to $\frac{1}{8}$ of the velocity of the motion $x(t)$ acts on the system. a) Determine the equation of motion $\mathrm{x}(\mathrm{t})$ if the object is initially released from 0.5 foot below the equilibrium position with an upward velocity $\frac{3}{2} \mathrm{ft} / \mathrm{s}$.

QUESTION 9. (8 points) Imagine that there is an electric source of an electric circuit given as $E(t)=10(\sin (t)+$ $\cos (t)$), the resistor-constance $R=5$ Ohms, the capacitor-constant $c=0.2$ Farad (No inductor is attached to the circuit). Initially, the charge on the capacitor is 2 . Find the current $i(t)$ in the circuit at any time t. Find the steady-state-current.

QUESTION 10. (8 points)

Is $\frac{d y}{d x}=\frac{-(\cos (x) y+2 x-3)}{\sin (x)+\cos (y)-4 y^{3}}$ exact? if yes, then solve it. If no, then please develop a new method that will help us to solve it.

QUESTION 11. (10 points) Let $A(t)$ be the amount of salt at any time t . Now imagine there is a tank initially holds 32 gallons of a mixture containing 12 kg of salt. A mixture containing 1 kg of salt per gallon is poured into the tank at the rate $4 \mathrm{gal} / \mathrm{min}$, while the well stirred mixture leaves the tank at rate $4 \mathrm{gal} / \mathrm{min}$. a) When will the amount of salt in the tank be doubled? (i.e., find t so that the amount of salt is 24 .). b) Find the concentration of salt per gallon after 32 minutes.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

